Two Different Methods for Numerical Solution of the Modified Burgers' Equation

نویسندگان

  • Seydi Battal Gazi Karakoç
  • Ali Başhan
  • Turabi Geyikli
چکیده

A numerical solution of the modified Burgers' equation (MBE) is obtained by using quartic B-spline subdomain finite element method (SFEM) over which the nonlinear term is locally linearized and using quartic B-spline differential quadrature (QBDQM) method. The accuracy and efficiency of the methods are discussed by computing L 2 and L ∞ error norms. Comparisons are made with those of some earlier papers. The obtained numerical results show that the methods are effective numerical schemes to solve the MBE. A linear stability analysis, based on the von Neumann scheme, shows the SFEM is unconditionally stable. A rate of convergence analysis is also given for the DQM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of the one dimensional non-linear Burgers equation using the Adomian decomposition method and the comparison between the modified Local Crank-Nicolson method and the VIM exact ‎solution

The Burgers’ equation is a simplified form of the Navier-Stokes equations that very well represents their non-linear features. In this paper, numerical methods of the Adomian decomposition and the Modified Crank – Nicholson, used for solving the one-dimensional Burgers’ equation, have been compared. These numerical methods have also been compared with the analytical method. In contrast to...

متن کامل

Comparison of The LBM With the Modified Local Crank-Nicolson Method Solution of Transient Two-Dimensional Non-Linear Burgers Equation

Burgers equation is a simplified form of the Navier-Stokes equation that represents the non-linear features of it. In this paper, the transient two-dimensional non-linear Burgers equation is solved using the Lattice Boltzmann Method (LBM). The results are compared with the Modified Local Crank-Nicolson method (MLCN) and exact solutions. The LBM has been emerged as a new numerical method for sol...

متن کامل

Numerical solution of non-planar Burgers equation by Haar wavelet method

In this paper, an efficient numerical scheme based on uniform Haar wavelets is used to solve the non-planar Burgers equation. The quasilinearization technique is used to conveniently handle the nonlinear terms in the non-planar Burgers equation. The basic idea of Haar wavelet collocation method is to convert the partial differential equation into a system of algebraic equations that involves a ...

متن کامل

The Solution of Coupled Nonlinear Burgers' Equations Using Interval Finite-difference ‎Method

In this paper an coupled Burgers' equation is considered and then a method entitled interval finite-difference method is introduced to find the approximate interval solution of interval model in level wise cases. Finally for more illustration, the convergence theorem is confirmed and a numerical example is solved.

متن کامل

An approximation to the solution of Benjamin-Bona-Mahony-Burgers equation

In this paper, numerical solution of the Benjamin-Bona-Mahony-Burgers (BBMB) equation is obtained by using the mesh-free method based on the collocation method with radial basis functions (RBFs). Stability analysis of the method is discussed. The method is applied to several examples and accuracy of the method is tested in terms of $L_2$ and $L_infty$ error norms.

متن کامل

Numerical solution of the one dimensional non-linear Burgers equation using the Adomian decomposition method and the comparison between the modified Local Crank-Nicolson method and the VIM exact solution

The Burgers equation is a simplified form of the Navier-Stokes equations that very well represents their non-linear features. In this paper, numerical methods of the Adomian decomposition and the Modified Crank Nicholson, used for solving the one-dimensional Burgers equation, have been compared. These numerical methods have also been compared with the analytical method. In contrast to the conve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014